THE AMERICAN JOURNAL OF MEDICAL SCIENCES AND PHARMACEUTICAL RESEARCH Metadata Indexing Impact Factor - 7.569(2022) CiteFactor - (2020-21 -1.08) Crossref doi 10.37547/TAJMSPR Volume 04 # THE AMERICAN JOURNAL OF MEDICAL SCIENCES AND PHARMACEUTICAL RESEARCH (TAJMSPR) Journal Impact Factor (2019-4.94, 2020-5.286, 2021-5.64) Journal Impact Factor For Current Year 2022 (6.319) DOI-10.37547/TAJMSPR Volume 04 Issue 04, 2022 ISSN 2689-1026 The USA Journals, USA www.theamericanjournals.com /index.php/tajmspr ### **Editor-in-Chief** # Dr. Jayaprakash k. Murthy Along with The American Journal of Medical Sciences and Pharmaceutical Research being committed to publishing the scholarly empirical or theoretical research articles having a great impact on the medical science field, the journal promotes fresh ideas or innovative perspectives on research at hand. All materials submitted to The American Journal of Medical Sciences and Pharmaceutical Research (TAJMSPR) are conditional meticulous peer review utilizing the 'double-blind' refereeing procedure. Medical science covers many subjects that try to explain how the human body works. Starting with basic biology it is generally divided into areas of specialization such as anatomy, physiology, and pathology with some biochemistry, microbiology, molecular biology and genetics. Students and practitioners of holistic models of health also recognize the importance of the mind-body connection and the importance of nutrition. A qualification in Anatomy, Physiology and Pathology is a prerequisite for many courses which lead to professional qualifications in alternative or complementary medicine. Our distance learning courses which are available via correspondence and online have been designed to supplement learning for those wishing to progress to the study of natural health therapies. Whether you are studying to be a nutritionist, homeopath, or a yoga instructor, our courses will provide a high level of knowledge in medical science required for these practices. Website: www.theamericanjournals.com/index.php/tajmspr Email: editor@usajournalshub.com Publisher Address: 304 S. Jones Blvd #5245 Las Vegas, NV 89107 USA #### Articles In This Issue - Khamidov Obid Abdurakhmonovich, Zhuraev Kamoliddin Danabayevich, Khamrokulov Munis Mukhsinovich, Azimova Kamola Alisherovna, & Sayfiev Davron Dilshod Ugli. (2022). THE ROLE OF COMPUTED TOMOGRAPHY IN THE DIAGNOSIS OF CHOBLE (LITERATURE REVIEW). The American Journal of Medical Sciences and Pharmaceutical Research, 4(04), 1–7. - K. A. Yuldashev, & Abzoirov Kudrat Musulmanovich. (2022). BIOCHEMICAL, IMMUNOLOGICAL, SEROLOGICAL INDICATORS FOR SERORESISTANT SYPHILIS, CORRECTION IN TREATMENT. The American Journal of Medical Sciences and Pharmaceutical Research, 4(04), 8–10. - Khidirova G.O., Khasanov K.D., Erkinova Dilrabo, & Abdurakhmanova Nafosat. (2022). MORPHOLOGICAL STRUCTURE OF THE FEMUR IN WHITE RATS WITH HYPOPARATHYROIDISM. The American Journal of Medical Sciences and Pharmaceutical Research, 4(04), 11–15. - Iskandarov Alisher Iskandarovich, Yakubov Khayot Hamidullaevich, & Ismatov Abrorkhon Askarovich. (2022). FORENSIC EVALUATION OF DIFFUSE AXONAL INJURY. The American Journal of Medical Sciences and Pharmaceutical Research, 4(04), 16–18. - Iskandarova Shakhnoza, & Amilova Asalya. (2022). PREVENTION OF CORONARY HEART DISEASE. The American Journal of Medical Sciences and Pharmaceutical Research, 4(04), 19–21. - Iskandarova Shakhnoza, & Amilova Amalya. (2022). ORGANIZATION OF ACTIVITIES, ACHIEVEMENTS AND PROSPECTS IN PEDIATRICS. The American Journal of Medical Sciences and Pharmaceutical Research, 4(04), 22–24. - Iskandarova Shakhnoza, & Amilova Asalya. (2022). CARDIOVASCULAR DISEASES AS A SOCIAL AND HYGIENIC PROBLEM. The American Journal of Medical Sciences and Pharmaceutical Research, 4(04), 25–27. - Dilshod Sirojovich Tolibov, Rushana Abubakirovna Salimova, & Jamoliddin Muxiddin-O'g'li Sharafiddinov. (2022). OPTIMIZATION OF APPROACHES TO EARLY DIAGNOSIS OF ALZHEIMER'S TYPE DEMENTIA AT THE OUTPATIENT LEVEL. The American Journal of Medical Sciences and Pharmaceutical Research, 4(04), 28–31. - Aminjon Ne'matov, Islambek Kudiyarov, Nodira Yodgorova, & Zuxra Orinbayeva. (2022). CHARACTERISTICS OF INTESTINAL MICROBIOTSENOSIS IN COVID-19 PATIENTS. The American Journal of Medical Sciences and Pharmaceutical Research, 4(04), 32–39. VOLUME 04 ISSUE 04 Pages: 32-39 SJIF IMPACT FACTOR (2020: 5. 286) (2021: 5. 64) (2022: 6. 319) OCLC - 1121105510 METADATA IF - 7.569 https://theamericanjou rnals.com/index.php/ta content from this work may be used under the terms of the creative commons attributes # CHARACTERISTICS OF INTESTINAL MICROBIOTSENOSIS IN COVID-19 PATIENTS Submission Date: April 05, 2022, Accepted Date: April 15, 2022, Published Date: April 28, 2022 Crossref doi: https://doi.org/10.37547/TAJMSPR/Volume04Issue04-09 #### **Aminjon Ne'matov** Doctor of Medical Science, professor, Academician of the Academy of Medical and Technical Sciences of the Russian Federation, Center for the Development of Professional Qualifications of Medical Workers, Tashkent Medical Academy, Uzbekistan #### Islambek Kudivarov Assistant, Tashkent Medical Academy, Uzbekistan #### Nodira Yodgorova Doctor of Philosophy in Medical Science, associate professor, Tashkent Medical Academy, Uzbekistan #### Zuxra Orinbayeva Assistant, Tashkent Medical Academy Tashkent, Uzbekistan #### ABSTRACT #### KEYWORDS COVID-19, SARS-CoV-2, intestinal microflora, diarrhea, bacteria VOLUME 04 ISSUE 04 Pages: 32-39 SJIF IMPACT FACTOR (2020: 5. 286) (2021: 5. 64) (2022: 6. 319) OCLC - 1121105510 METADATA IF - 7.569 Publisher: The USA Journals #### INTRODUCTION Today SARS-CoV-2 caused COVID-19 disease was officially declared a pandemic on March 11, 2020 by the World Health Organization as a worldwide outbreak of coronavirus infection. To date, 390 961 200 people worldwide have been infected with COVID-19, and 5 725 993 have died as a result of the pandemic (WHO 05.02.2022y) [45]. which requires the development of laboratory tests, treatment methods and prevention measures for COVID-19. [2,32,35]. Coronavirus infection (COVID-19) is a new strain of the SARS CoV-2 coronavirus family that spreads by airborne and household contact way, prone to damage lung tissue. It can range from asymptomatic virus carriers to severe clinical manifestations of the disease, as an infectious disease, intoxication, inflammation of the upper and lower respiratory tract [35] i.e. bilateral pneumonia (viral diffuse alveolar injury with microangiopathy), the development of acute respiratory distress syndrome were noted [27]. However, with COVID-19, damage has been observed to organs and systems other than the body's respiratory organs and systems, including the digestive system. The gastrointestinal tract (GIT) can serve as an "entry gate for infection" along with respiratory tract [7,15,17,19]. Changes in the composition of the intestinal microflora in patients with COVID-19 infection have been identified in several studies [4,28,30]. #### MATERIALS AND METHODS In order to write this article other articles, literature, and research findings on the intestinal microflora in COVID-19 have been analyzed. As of January 31, 2020, the team of Chinese researchers led by Dr. Zhong studied 1,099 Chinese patients, and diarrhea was diagnosed in 3.8% of them [9]. Similarly, Huang et al found that diarrhea was the main symptom in one of every 41 patients, and that the incidence of diarrhea was 2.4%. аниқлашди [12]. In the later stages of the COVID-19 pandemic, a significant increase in the number of patients with diarrhea was observed, indicating an increase in the incidence of diarrhea. 49.5% of the patients admitted to Wuhan Hospital in Hubei Province of China with Covid-19 infection were patients with diarrhea [3]. Evaluating the results of follow-up of patients in China, it can be noted that the lesions of the gastrointestinal tract in Covid-19 vary. Symptoms of diarrhea in Covid-19 have also been reported in the pediatric population, with diarrhea and vomiting occurring in 8.8% and 6.4% of sick children, respectively, and in such patients (both adults and children) respiratory symptoms of coronavirus infection may appear later than gastroenterological symptoms or may not be visible at all [11,16,26]. A study of 140 patients with Covid-19 in Wuhan showed that 39.6% of these patients had gastrointestinal symptoms, 24 had 17.3% nausea, 18 had 12.9% diarrhea and 7 had 5% vomiting. 74 patients with Covid-19 with gastrointestinal symptoms in Zhejiang Province, 53 had 71.6% diarrhea alone, 11 had 14.9% vomiting, and 10 had 13.5% nausea. A meta-analysis involving 4,243 patients from China, Singapore, South Korea, the United Kingdom, and the United States showed that 17.6% of patients had gastrointestinal symptoms, 26.8% had anorexia, 12.5% had diarrhea, 10.2% had nausea and vomiting, 9.2% had abdominal pain and discomfort, and other symptoms were observed in 23.7% of patients. The frequency of diarrhea ranged from 2.0% to 10.1%, and nausea and #### RESULTS Volume 04 Issue 04-2022 33 VOLUME 04 ISSUE 04 Pages: 32-39 SJIF IMPACT FACTOR (2020: 5. 286) (2021: 5. 64) (2022: 6. 319) OCLC - 1121105510 METADATA IF - 7.569 Publisher: The USA Journals vomiting ranged from 1.0% to 10.1% [25]. Gastrointestinal symptoms such as diarrhea, nausea, vomiting, and abdominal pain occur in approximately 20-40% of patients with Covid-19 infection [1,33,46]. We analyzed 19 published scientific studies on Covid-19 disease that was associated with diarrhea, nausea, abdominal pain, vomiting, anorexia, and bleeding. Of the 19 scientific papers, 13 were from China, 4 from the United States, 1 from Singapore, and 1 from Europe. In our analysis, the symptom of diarrhea was the most common, ranging from 2% to 33.7% of all patients. The mean duration of diarrhea in patients with Covid-19 was 1 to 9 days [14]. Other common gastrointestinal symptoms include anorexia (341/2914, 11.7%), nausea (253/2914, 8.7%), and vomiting (131/2914, 4.5%), pain (90/2914, 3.1%) and bleeding (5/ 2914, 0.2%). Symptoms of diarrhea were reported more frequently than at the time of hospitalization [15]. Recently, we reported a strong link between diarrhea and disease severity [10]. These data suggest that diarrhea symptoms may indicate the severity of Covid-19 [24]. Earlier (January 2021), U.S. researchers introduced the results of a study on the medical portal Biocodex, which showed that in COVID-19 disease, a disruption of the intestinal microflora, is associated with the disease. The study found that symptoms associated with the disease, such as vomiting, nausea, and diarrhea, were often observed when the disease was severe. In a study of 318 patients diagnosed with COVID-19, 34.8% had gastrointestinal symptoms, including 33.7% with diarrhea. It is worth noting that gastrointestinal symptoms, such as diarrhea can sometimes occur before fever and respiratory symptoms. According to British expert Professor Tim Spector (2021), in patients with severe COVID-19 disease, the intestinal microflora is severely damaged and the state of the intestinal microbiome is of great importance in protecting against coronavirus and many other diseases. According to Anna Balandina (01.22.2021), an infectious disease doctor in the Russian Federation, the disruption of the intestinal microflora may be due to the entry of SARS-CoV-2 virus into the intestinal epithelial cell and the presence of special receptors on its surface. The virus affects both respiratory tract cells and gastrointestinal tract cells through these receptors. Therefore, the cells die and the processes of cell digestion, absorption of nutrients are disrupted. The digestive system can serve as a gateway for other infections, which slows down the recovery process after COVID-19 disease. The term "intestinal virus" began to appear in the scientific literature. If the presence of pathogenic viruses in the human gut has been proven more than a century ago, their effects on human homeostasis have only recently been studied. The result of scientific studies is that pathogenic viruses belonging to the families Adenoviridae, Picornaviridae, Reoviridae, Mimiviruse, affecting physiological processes in the intestine can lead to changes in the composition of the intestinal microflora in terms of quantity and quality [22]. The gastrointestinal tract has been shown to be an extrapulmonary site for replication of SARS-CoV-2 virus because angiotensin-converting enzyme receptors (ASE2) are expressed not only on type II pneumocyte membranes but also on the apical surface of intestinal epithelial cells. This suggests that SARS-CoV-2 is transmitted through the fecal-oral mechanism [5,21]. The SARS-CoV-2 virus enters the gastrointestinal tract through the mechanism of fecal-oral transmission, and as a result of the virus binding to intestinal cells through ASE2 receptors, it manifests clinical signs of the gastrointestinal tract. Zuo and others (2021) found that almost half of the patients with Covid-19 infection VOLUME 04 ISSUE 04 Pages: 32-39 SJIF IMPACT FACTOR (2020: 5. 286) (2021: 5. 64) (2022: 6. 319) OCLC - 1121105510 METADATA IF - 7.569 Publisher: The USA Journals had SARS-CoV-2 virus in their fecal samples, and in patients which SARS-CoV-2 virus positive conditioned, the amount of pathogens such as Collinsella aerofaciens, Collinsella tanakaei, Streptococcus infantis, and Morganella morganii might be high [6,8,33,47,48]. Previously, it was reported that SARS-CoV-2 virus was found in fecal samples (four out of eight patients) regardless of the presence of diarrhea symptoms [15]. In addition, another study showed that SARS-CoV-2 RNA was found in the fecal samples of 22 (52.4%) patients out of 42 Covid-19 patients with gastrointestinal symptoms. SARS-CoV-2 RNA was found in the fecal samples of 9 (39.1%) patients out of 23 Covid-19 patients without gastrointestinal symptoms [31]. Fecal samples of patients with severe Covid-19 infection had higher levels of conditionally pathogenic bacteria, such as Morganella morganii, Collinsella aerofaciens, Streptococcus infantis and Collinsella tanakaei. Bacteroides stercoris. Parabacteroides merdae, Lachnospiraceae, and Alistipes onderdonkii bacteria were more prevalent in the fecal samples of patients without signs of Covid-19 infection [33]. In September 2020, Koloskova E.A. published data on the examination of fecal samples of 15 patients with SARS-CoV-2 by sequencing of 16sRNA. It is detected that in such patients there is a decrease in the amount of commensal bacteria (Eubacterium ventriosum, Faecalibacterium prausnitzii, Roseburia. Lachnospiraceae) and conditionally increase in pathogenic bacteria (Clostridia hathewayi, Actomyces viscosus and Bacteroides nordii, Candida albicis, Candida albicans, Candida albicans). Thus, bacteria of Clostridium hatthewayi (Firmicutes type), Bacteroides nordii (Bacteroidetes type) and Actinomyces viscosus species were found to be significantly higher in the examined patients than in healthy volunteers, indicating that the severity of Covid-19 disease is directly related to conditionally pathogenic bacteria (Clostridium ramosum, Clostridium hathewayi) [37]. In January 2021, a study conducted by a group of Chinese scientists involving 100 patients with COVID-19 was published. Accordingly, changes in the composition of the intestinal microbiocenosis in patients were confirmed to occur earlier. Examination of the feces of patients by 16sRNA sequencing method showed a decrease in the number of bacterial species of Faecalibacterium prausnitzii and Eubacterium rectale (type Firmicutes), Bifidobacterium adolescentis (Actinobacteria type) compared to healthy people. Intestinal dysbacteriosis associated with decreased levels of Lactobacillus and Bifidobacterium has been observed in patients with Covid-19 [29]. Increased levels of Collinsella, Streptococcus, Morganella, Coprobacillus, Clostridium ramosum, and Clostridum mathewayi were increased in patients with severe Covid-19 disease, and parabacteroides, Bacteroides, Alistipes, Lachnospiraceae, F.Prausnitzii were increased in mildly ill patients [21,33]. Moreira-Rosario and others [18] studied the effect of Covid-19 disease on changes in the composition of the intestinal microbiocenosis. The results of the study revealed changes in the ratio of Firmicute and Bacteroid. The authors also found a decrease in the number of butyrate-forming bacteria belonging to the family Lachnospiraceae (Reseburia and Lachnospira), a decrease in the amount of bacteria in the genus Actinobacteria (Protein) and increase in the amount of Protein (Bificobacteria and Collin) in the comparison of mild to severe and moderate Covid-19 [4,22]. It was observed that the most common commensals in healthy middle-aged people were Eubacterium, Faecalibacterium prausnitzii, Roseburia Lachnospiraceae, while in middle-aged COVID-19 patients these commensals were reduced and VOLUME 04 ISSUE 04 Pages: 32-39 SJIF IMPACT FACTOR (2020: 5. 286) (2021: 5. 64) (2022: 6. 319) OCLC - 1121105510 METADATA IF - 7.569 hathewayi, conditionally-pathogenic Clostridium Actinomyces viscosus and Bacteroides nordii were increased [17,33]. Some intestinal commensals with known immunomodulatory potential, such as Faecalibacterium prausnitzii, Eubacterium rectale, and bifidobacteria, were less common in COVID-19 patients In another study, Zuo et al analyzed fecal samples from 15 patients who recovered from Covid-19 disease using the sequencing method [33]. The study found that the virus persisted in the feces for a long time even after SARS-CoV-2 was eliminated [2,6], a significant increase in conditionally pathogenic bacteria and a decrease in beneficial microorganisms compared with a healthy control group. This has been suggested to be a risk factor for gastroenterologists, endoscopy staff, and for other patients during endoscopy and colonoscopy [5,6,13,30,34]. Indeed, dysfunction of the persistent intestinal microflora can lead to chronic inflammation of the gastrointestinal tract and an increase in intestinal permeability, all of which leads to disruption of the gastrointestinal tract [24]. In conclusions the SARS-CoV-2 virus enters the gastrointestinal tract through the fecal-oral mechanism and causes varying degrees of intestinal dysbacteriosis in almost all Covid-19 patients. An increase in the number of conditionally-pathogenic bacteria and a decrease in the amount of beneficial commensals were observed in Covid-19 disease, indicating that the clinical severity of Covid-19 disease is directly related to conditionally-pathogenic bacteria. It has been found that viral RNA can be stored for a long time in the gut of patients recovered from Covid-19 disease. In Uzbekistan, the study of the intestinal microflora of Covid-19 patients and the identification of similarities and differences from foreign data, to find ways to correct it remain relevant. #### REFERENCES - Byungchang Jin , Rajan Singx , Se Eun Ha , Xanna Zogg, Pol J Park va Seungil Ro. Pathophysiological mechanisms underlying gastrointestinal symptoms in patients with COVID-19. Jahon J Gastroenterol. 2021 yil 21 may; 27(19): - 2. Chen Y, Gu S, Chen Y, Lu H, Shi D, Guo J, et al. Sixmonth follow-up of gut microbiota richness in patients with COVID-19. Gut 2021. 10.1136/gutjnl-2021-324090 - Coronavirus confirmed as pandemic by World Organization. BBC New. https://www.bbc.com/news/world-51839944 - 4. D.Fang, J.Ma, J.Guan, M.Wang, Y.Song, D.Tian, Manifestations of digestive system in hospitalized patients with novel coronavirus pneumonia in Wuhan, China: a single-center, descriptive study, Chin J Dig, 40 2020y - 5. Dhar D., Mohanty A. Gut Microbiota and Covid 19-Possible Link and Implications. Virus Res. 2020;285:198018. - 6. Ding S, Liang TJ. Is SARS-CoV-2 Also an Enteric Pathogen With Potential Fecal-Oral Transmission? A COVID-19 Virological and Clinical Review Gastroenterologiya. 2020 Jul; 159(1): 53-61 - 7. Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, et al. Evolution of antibody immunity to SARS-CoV-2. Nature 2021;591:639-44. - 8. Goh KL, Chuah KH. COVID-19 and the digestive system: More than just a "flu". JGH Open. 2020;4:318-319. - 9. Gu J., Han, B., Wang J. COVID-19: gastrointestinal potential manifestations and fecal-oral transmission. Gastroenterology. 2020 Mar 3. Pii:S0016 5085(20)30281-X. - 10. Gu L, Deng H, Ren Z, Zhao Y, Yu S, Guo Y, et al. Dynamic Changes in the Microbiome and Mucosal VOLUME 04 ISSUE 04 Pages: 32-39 SJIF IMPACT FACTOR (2020: 5. 286) (2021: 5. 64) (2022: 6. 319) OCLC - 1121105510 METADATA IF - 7.569 - 11. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382:1708-1720. - 12. Ha S, Jin B, Klemmensen B, Park P, Mahbub S, Gladvill V, Lovely FM, Gottfrid-Blackmore A, Habtezion A, Verma S, Ro S. Elevated serotonin in COVID-19-associated diarrhea. Intestine. 2021: - 13. Han C, Duan C, Zhang S, Spiegel B, Shi H, Wang W, et al. . Digestive Symptoms in COVID-19 Patients With Mild Disease Severity: Clinical Presentation, Stool Viral RNA Testing, and Outcomes. Am J Gastroenterol (2020) 115:916-23. - 14. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. - 15. Hugon, P. Et al. A comprehensive repertoire of prokaryotic species identified in human beings/ P. Hugon, J.C. Dufour, P.E. Fourmier et al. // The Lancet Infectious Diseases. - 2015. - Vol. 15, №. 10. - P. 1211-1219. - 16. Jin X, Lian JS, Xu JH, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. 2020; 69:1002-1009. - 17. Lin L, Jiang X, Zhang Z, Huang S, Fang Z, Gu Z, Gao L, Shi H, Mai L, Liu Y, Lin X, Lai R, Yan Z, Li X, Shan H. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020; 69: 997-1001 - 18. Liu K., Fang Y.Y., Deng Y., Liu W., Wang M.F., Ma J.P. et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J 2020;00:00-00. - 19. Mamatmusaeva F.Sh., Mamanov P.A., Kudiyarov I.A., Orinbaeva Z.N., N.G'.Yo'ldosheva "Covid-19 rekonvaletstsentlaridagi disbakterioz - (Farmatsiya, immunitet va vaktsina № 2 jurnal 2021y Toshkent) 53-bet Med 2020:1-4. - 20. Moreira-Rosário, A.; Marques, C.; Pinheiro, H.; Araújo, J.R.; Ribeiro, P.; Rocha, R.; Mota, I.; Pestana, D.; Ribeiro, R.; Pereira, A.; et al. Gut Microbiota Diversity and C-Reactive Protein Are Predictors of Dis-ease Severity in COVID-19 Patients. Front. Microbiol. 2021, 12, 705020. - 21. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020;323:1775-6. - 22. P.A.Mamanov, Sh.A.Tursunova., M.A.Mo'minova., I.A.Kudivarov., N.A.Pirmatova., A.Valivianov., "Ichak mikroflorasining F.Sh.Mamatmusaeva Covid-19 bemorlaridagi holati" (Farmatsiya, immunitet va vaktsina № 2 jurnal 2021y Toshkent). 67-68 bet - 23. Park S-K, Lee C-W, Park D-I, Woo H-Y, Cheong HS, Shin H-C, et al. Detection of SARS-CoV-2 in Fecal Samples From Patients With Asymptomatic and Mild COVID-19 in Korea. Clin Gastroenterol Hepatol (2021) 19:1387-94.e2. - 24. Penninger JM, Grant MB, Sung JJY. The Role of Angiotensin Converting Enzyme 2 in Modulating Gut Microbiota, Intestinal Inflammation, and Coronavirus Infection. Gastroenterology 2021; 160: 39-46 - 25. Scarpellini, E. The human gut microbiota and virome: potential therapeutic implications / E. Scarpellini, G. Ianiro, F. Attili et al. // Digestive and Liver Disease. - 2015. - Vol. 47, №. 12. - P. 1007-1012. - 26. Segal J.P., Mak J.W.Y., Mullish B.H., Alexander J.L., Ng S.C., Marchesi J.R. et al. The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? Therap Adv Gastroenterol. 2020;6:1178- Volume 04 Issue 04-2022 37 VOLUME 04 ISSUE 04 Pages: 32-39 SJIF IMPACT FACTOR (2020: 5. 286) (2021: 5. 64) (2022: 6. 319) OCLC - 1121105510 METADATA IF - 7.569 - 27. Tang L, Gu S, Gong Y, Li B, Lu H, Li Q, et al. Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering 2020;6:1178-84 - 28. Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, et al. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Res (2017) 77:1783-812. - 29. Tian Huang, Long-Quan Li1, Yong-Qing Wang, Zheng-Ping Wang, Yuan Liang «Progress on Gastrointestinal Symptoms, Treatment and Protection in COVID-19 Patients» - 30. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J. Et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. - 31. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; 581:465-9 - 32. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report Lastaccessed, March 9, 2020. - 33. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020; 158 (6):1831-3. e3 - 34. Xu K., Cai H., Shen Y., Ni Q., Chen Y., Hu S., Li J., Wang H., Yu L., Huang H., et al. Management of corona virus disease-19 (COVID-19): The Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49:147-157. - 35. Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med 2020:1-4. - 36. Yeoh Y. K., Zuo T., Lui G., Zhang F., Liu Q., Li A. Et al.Gut microbiota composition reflects disease severity and dysfunctional immune responses in - patients with COVID-19. Gut. 2021 Jan 11;70:698-706 - 37. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, Ng OT, Marimuthu K, Ang LW, Mak TM, Lau SK, Anderson DE, Chan KS, Tan TY, Ng TY, Cui L, Said Z, Kurupatham L, Chen MI, Chan M, Vasoo S, Wang LF, Tan BH, Lin RTP, Lee VJM, Leo YS, Lye DC. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020 Apr 21;323(15):1488-1494 - 38. Zhai S.L., Wei W.K., Lv D.H., Xu Z.H. Where did SARS-cov-2 come from? Vet Rec. 2020;186 - 39. Zuo T, Liu Q, Zhang F, Lui GC, Tso EY, Yeoh YK, Chen Z, Boon SS, Chan FK, Chan PK, Ng SC.Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2021; 70: 276-284 - 40. Zuo T, Liu Q, Zhang F, Yeoh YK, Wan Y, Zhan H, et al. Temporal landscape of human gut RNA and DNA virome in SARS-CoV-2 infection and severity. Microbiome 2021;9:91. - 41. Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. until discharge. Gastroenterology 2020;159:1302-10. e5. - 42. Акилов Х.А., Камилов А.И., Мусабаев Э.И., ва бош., "COVID-19ни енгил шаклда кечираётган беморларни уй шароитида олиб бориш бўйича вақтинчалик клиник қўлланма. 2020 й, б-1-10 - 43. Жумамуродов С.Т., Нурузова З.А. Инфекции, со¬путствующие течению covid-19 // Вестник TMA № 3, 2021 б-18. - 44. Колоскова Е. А. Микробиологические факторы риска развития осложнений при COVID - 19 инфекции.2020 - 45. https://www.gazeta.uz/ru/coronavirus-stat - 46. https://pubmed.ncbi.nlm.nih.gov/32108071/ - 47. https://cdhf.ca/health-lifestyle/diarrhea-as-asymptom-of-the-coronavirus-covid-19/ Volume 04 Issue 04-2022 38 VOLUME 04 ISSUE 04 Pages: 32-39 SJIF IMPACT FACTOR (2020: 5. 286) (2021: 5. 64) (2022: 6. 319) OCLC - 1121105510 METADATA IF - 7.569 Publisher: The USA Journals 48. https://www.news-medical.net/health/COVID-19and-diarrhea.aspx Volume 04 Issue 04-2022