

KLINIK LABORATOR
DIAGNOSTIKADA INNOVATSION
TEXNOLOGIYALARDAN
FOYDALANISH, MUAMMOLAR VA
YECHIMLAR
xalqaro ilmiy-amaliy
anjuman
18 aprel 2023 yil

Oʻzbekiston Respublikasi Sogʻliqni saqlash vazirligi www.ssv.uz Toshkent tibbiyot akademiyasi www.tma.uz

$Klinik\ laborator\ diagnostikada\ innovatsion\ texnologiyalardan\ foydalanish,\ muammolar\ va\ yechimlar\underline{.\ 2023}$

оқсилни аниқлашнинг клиник ва диагностик ахамияти	
Ереженова Ф.Б. Функции витамина д в организме и его	52
лабораторная диагностика	02
Жиенбаева А.А., Курбонова З.Ч. Диагностика поражения почек при	54
сердечной недостаточности	54
Жумаева З.С. Қандли диабет клиник лаборатор диагностикаси	56
Жуманазаров С.Б., Жабборов О.О., Сайдалиев Р.С. Сравнителная	
эффективность лечения препаратом "эритропоэтин" больных ХБП	57
	57
III-IV стадий	60
	UU
хомиладорларда гемоглобин ва эритроцит назорати	<i>(</i> 1
Зайнутдинова Д.Л., Хуррамова Д.И. Хомиладорларда гематологик	61
кўрсаткичлар лаборатор диагностикаси	(2
Зайнутдинова Д.Л., Бабаджанова Ш.А. Хомиладорларда	63
тромботцитопатияларни аниклашда клиник ва лаборатор	
диагностиканинг ахамияти	
Зайнутдинова Д.Л. Постковид синдромида хомиладорларда	64
лейкоцитлар назорати	
Зайнутдинова Д.Л., Хуррамова Д.И. Хомиладорларда гемоглобин,	66
эритроцит ва ранг кўрсаткичларини аниклаш ахамияти	
Исламова З.С., Мусаева Н.Б. Особенности клинического течения	67
геморрагических васкулитов	
Исламова З.С., Мусаева Н.Б., Мусаков М.С. Принципы лечения	
микротромбоваскулитов после перенесённой коронавирусной	70
инфекции	
Исламова З.С., Мусаева Н.Б. Дифференциальная диагностика	72
системных васкулитов	
Касимова О.О. Раннее диагностирование болезни паркинсона при	75
помощи rt-quic (the real-time quaking-induced conversion) системы	
Касимова О.О. Болезнь Паркинсона и инновационные методы	75
лабораторной диагностики	
Касимова С.А., Бабаджанова Ш.А., Курбонова З.Ч. Влияние	
проведения генетичеких исследований на эффективность лечения у	77
больных острым промиелоцитарным лейкозом	
Касимова С.А., Бабаджанова Ш.А., Курбонова З.Ч.	
Дифференциальная диагностика острого миелобластного лейкоза и	80
острого лимфобластного лейкоза	
Касимова С.А., Нуритдинова Н.Х., Бабаджанова Ш.А.	
Лабораторная диагностика острого лейкоза и хронического	82
миелоидного лейкоза	
Касимова С.А. Значение диагностирования филадельфийской	84
хромосомы при остром лимфобластном лейкозе	
Кодирова Ш.А., Умарова З.Ф., Жуманазаров С.Б. Влияние	

Однолокусный анализ SNP rs2583988, показал, что аллели риска каждого SNP, а также гомозиготы по этим аллелям чаще встречались у больных БП по сравнению с контрольной группой. Логистический регрессионный анализ подтвердил значительную связь между генотипами риска и PD для rs2583988 (OR = 12,20, 95% IC: 1,52–97,58, p = 0,018), которые оставались значимыми после поправки на ковариаты возраста и пола. Расчет статистической мощности, примененный к размеру выборки, использованной в этом исследовании, указывает на обнаружение связи гензаболевание для SNP rs2583988, со значениями OR выше 2,60 с точностью от 68 до 85% по рецессивной модели. Возраст начала заболевания не отличался между тремя генотипами для оцениваемых SNP (данные не показаны).

Вывод: Аллели риска и генотипы риска встречались значительно чаще в случаях, чем в контроле, и ассоциации риска БП для SNP rs2583988 были подтверждены для гомозиготного генотипа. Носители аллеля риска Тrs2583988, достоверно чаще встречались у больных с когнитивными нарушениями, чем в контроле. Регрессионный анализ показал связь между аллелями риска и клиническими исходами, а также влияние факторов окружающей среды на риск БП.В исследовании не наблюдалось ассоциаций распределения аллеля риска и наличия депрессии. Тем не менее, генотип ТТоказывает защитное действие y пациентов. исследование с китайской выборкой выявило сниженный риск депрессии у носителей гомозиготного генотипа риска REP1 и корреляцию с оценкой часть II, моторными флуктуациями и женским полом прогнозировании депрессии при БП (Danetal., 2016) .Что когнитивных аспектов, аллели риска T-rs2583988, чаще встречались в случаях с когнитивными нарушениями, чем в контроле, что указывает на больший риск этого исхода при БП. Кроме того, обнаруживается связь когнитивных нарушений с риском БП в модели логистической регрессии. Неожиданное обнаружение генотипов REP1 было описано в продольном случаи БП североамериканском исследовании: c более показателями REP1 были связаны с лучшей двигательной функцией и сниженным риском когнитивных нарушений (Markopoulouetal., 2014). Эти данные подчеркивают возможный двойной эффект или роль, зависящую от времени, для вариантов SNCA.

ВЛИЯНИЕ ПРОВЕДЕНИЯ ГЕНЕТИЧЕКИХ ИССЛЕДОВАНИЙ НА ЭФФЕКТИВНОСТЬ ЛЕЧЕНИЯ У БОЛЬНЫХ ОСТРЫМ ПРОМИЕЛОЦИТАРНЫМ ЛЕЙКОЗОМ

Касимова С.А., Бабаджанова Ш.А., Курбонова З.Ч. Ташкентская медицинская академия

Острый промиелоцитарный лейкоз — ОПЛ (по классификации ВОЗ 2008 — острый миелолейкоз с t(15;17)(q22;q12); (PML-RAR α) и вариантами; по FAB-классификации — M3, M3v — нетипичный ОПЛ) относят к редкой,

особой форме острого миелоидного лейкоза (5-15% всех случаев ОМЛ.). Он характеризуется аномальным накоплением (≥20%) в костном мозге одного из видов миелоидных клеток — промиелоцитов в сочетании с хромосомными транслокациями, затрагивающими ген альфа рецептора ретиноевой кислоты (RARα), расположенного на 17 хромосоме. В свою очередь, промиелоциты — это клетки-предшественники гранулоцитов, возникающие на одной из стадий их созревания (миелобласты — промиелоциты — миелоциты — гранулоциты) [2].

ОПЛ встречается в абсолютно любом возрасте, даже в детском. Однако большинство пациентов в момент диагноза заболевания имеют возраст около 40 лет, что является отличительной чертой ОПЛ от других видов острого миелолейкоза, где в основном больные — люди пожилого возраста.

Основной хромосомной аномалией ОПЛ (95%) является реципрокная транслокация (t) (15;17)(q22;q21) - PML/RARa в опухолевых промиелоцитах, вследствие чего ген промиелоцитарного лейкоза (PML-ген), расположенный на 15 хромосоме, переносится на длинное плечо 17 хромосомы в область, где находится ген альфа-рецептора ретиноевой кислоты (RARa). В результате t (15;17) появляется пара сливных аномальных гена: PML/RARa на деривате (der) 15 хромосомы и RAR/PML на деривате 17 хромосомы. Можно выделить следующие генетические методы для определения данных транслокаций: ПЦР, FISH и стандартное цитогенетическое исследование[3].

Цель исследования: Провести обзор литературы по проблеме диагностики острого промиелоцитарного лейкоза. Изучить связь различных мутаций при ОПЛ с эффективностью лечения.

Материалы и методы. Для сравнения мировых практик диагностики ОПЛ было изучено и проанализировано более 30 научно-практических статей, посвященных данной проблеме и опубликованных в различных медицинских журналах в период 2014 – 2022 годов [3].

Результаты исследования. Bce случаи ОПЛ, установленного морфологическими и цитохимическими методами исследования, должны быть подтверждены методом ПЦР или FISH в момент установления диагноза, так как в 5–10 % случаев при отсутствии классической t (15; 17) обнаруживается транскрипт PML-RARA. Для диагностики ОПЛ крайне необходимым является быстрое диагноза. Поскольку эффективность цитогенетическое подтверждение таргетного лечения на основе ретиноидов и/или производных мышьяка строго зависит от наличия химерного гена PML/RARA, генетические подтверждение диагноза является обязательным во всех случаях [1].

Генетическое подтверждение диагноза должно выполняться, если возможно, на бластных клетках, полученных из КМ. Идентификация ОПЛ-специфических генетических поломок в бластных клетках осуществляется на уровне анализа хромосом, ДНК, РНК и химерного белка с использованием стандартного кариотипирования, флуоресцентной in situ гибридизации (FISH), полимеразно-цепной реакции с обратной транскриптазой (ОТ-ПЦР)

или анти-PML моноклональных антител. Соответственно, каждый из методов имеет свои преимущества и недостатки [5].

Метод кариотипирования позволяет обнаруживать дополнительные хромосомные перестройки, но они не имеют существенного прогностического значения при ОПЛ. Цитогенетический анализ может быть полезен в тех случаях ОПЛ, когда синтез химерного белка PML/RARA не осуществляется. Стандартная цитогенетика также может способствовать выявлению редких вариантов ОПЛ в том числе с t (11; 17) (q23; q21), t (11; 17) (q13; q21) и t (5; 17) (q35; q21), приводящих к синтезу химерных продуктов PLZF-RARA, NuMA RARA и NPM1-RARA соответственно, а также другим, описанным совсем недавно.

FISH-анализ PML/RARa на выполняется использованием флуоресцентных зондов. Этот метод высокоспецифичен, облалает достаточной чувствительностью, намного дешевле и менее трудоемок, чем кариотипирование. FISH может быть полезен в диагностике предполагаемых случаев ОПЛ, при которых не выявляется химерный транскрипт PML-RARA. Так, FISH-исследование может выявить реаранжировку гена RARA, который может быть партнером другого – не РМС-гена. В клиниках, в которых нет возможности выполнить цитогенетическое исследование, диагноз должен быть подтвержден в референс-лаборатории [4].

ОТ-ПЦР-анализ для выявления химерного продукта PML-RARA был создан и стандартизован в рамках международной кооперации. Важно, что помимо высокой специфичности и чувствительности он определяет расположение точки разрыва PML, устанавливая тем самым маркер для следующего мониторинга МОБ. Однако малое количество PHK (и, как следствие, ложноотрицательный результат), контаминация/артефакты (ложноположительный результат), а также относительно длительный период подготовки проб (около 2 дней) являются основными недостатками этого метода. Кроме того, очень желательно, чтобы детекцию химерных транскриптов и мониторинг образцов проводили в референс-лабораториях с хорошо обученным персоналом и большим опытом [6].

Определение молекулярного варианта ОПЛ (PML-RARA, PLZF-RARA, NuMA-RARA, NPM-RARA и др.) может подсказать, чувствительны ли опухолевые клетки к воздействию ATRA** и мышьяка. Варианты ОПЛ с PLZF-RARA-онкогеном плохо отвечают на терапию ретиноидами [5].

Вывод: Всем пациентам до начала лечения ОПЛ (с целью уточнения варианта мутации) и во время лечения ОПЛ (для выполнения мониторинга МОБ) проведение молекулярного исследования транскриптов гена PML-RARα bcr-1, bcr-2 и bcr-3 в KM.

Литература.

- **1.** Гуляева И.Л., Веселкова М.С., Завьялова О.Р. Этиология, патогенез, принципы патогенетической терапии лейкозов // Научное обозрение. Педагогические науки. 2019. №5. Ч.3. С.47-50.
- **2.** Любченко М.А. Результаты лечения взрослых больных острым промиелоцитарным лейкозом за период 2015-2017 г. / М.А. Любченко и др. //

Klinik laborator diagnostikada innovatsion texnologiyalardan foydalanish, muammolar va yechimlar. 2023

Вестник Челябинской обл. клинич. больницы, № 1 (43) — Челябинск, 2019. — С. 35—40.

- 3. Никитин Е.Н. Инфекционные осложнения у пациентов с острым промиелоцитарным лейкозом // Е.Н. Никитин и др. // Здоровье, демография, экология финно-угорских народов, № 2 Ижевск, Изд-во: ИГМА, 2019. С. 43–46.
- **4.** Савченко В.Г. Клинические рекомендации по диагностике и лечению острого промиелоцитарного лейкоза взрослых / В.Г.Савченко и др. // IV Конгрессе гематологов России (Москва, апрель, 2018 г.) М., 2018. 70 с.
- **5**. L. Cicconi, F. Lo-Coco / Current management of newly diagnosed acute promyelocytic leukemia / Annals of Oncology, Vol. 27, Issue 8, August 2016, P. 1474–1481.
- **6.** Sandy D Kotiah, Mercy Medical Center (USA) / Acute Promyelocytic Leukemia Treatment Protocols / Medscape, Jul, 2019.

ДИФФЕРЕНЦИАЛЬНАЯ ДИАГНОСТИКА ОСТРОГО МИЕЛОБЛАСТНОГО ЛЕЙКОЗА И ОСТРОГО ЛИМФОБЛАСТНОГО ЛЕЙКОЗА

Касимова С.А., Бабаджанова Ш.А., Курбонова З.Ч. Ташкентская медицинская академия

Острый лейкоз - заболевание, в основе которого лежит возникновение в гемопоэтической клетке-предшественнице генетических изменений и образование клона злокачественных (бластных) клеток. инфильтрируют костный мозг, постепенно вытесняя нормальные гемопоэтические клетки, что приводит к резкому угнетению кроветворения. Для многих типов лейкозов характерна также бластная инфильтрация группе острых лейкозов органов. К относят миелобластный лейкоз (ОМЛ) и острый лимфобластный лейкоз (ОЛЛ). При острых лейкозах бластные клетки быстро вытеснят нормальные элементы костного мозга, что ведет к развитию панцитопении: эритропении, тромбоцитопении, нейтропении [1].

Острые лейкозы могут возникать из клеток лимфоидной и миелоидной линий кроветворения, что позволяет разделить их не две основные нозологические группы: острые лимфобластные (ОЛЛ) и острые миелобластные (ОМЛ) лейкозы. Различия между ОЛЛ и ОМЛ базируются на морфологических, цитохимических и иммунологических особенностях лейкозных клеток. ОЛЛ наиболее часто возникает в возрасте 2 - 10 лет (пик в 3 - 4 года), затем распространенность заболевания снижается, однако после 40 лет отмечается повторный подъем. ОЛЛ составляет около 85% лейкозов, встречающихся у детей. ОМЛ, напротив, наиболее часто встречается у взрослых, причем частота его увеличивается с возрастом [2].

ОЛЛ наиболее часто возникает в возрасте 2 - 10 лет (пик в 3 - 4 года), затем распространенность заболевания снижается, однако после 40 лет отмечается повторный подъем. ОЛЛ составляет около 85% лейкозов,