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Remarks on the Pitman’s Efficiency of Goodness of Fit Tests Based on
Grouped Data

Mirakhmedov Sh.M., Bozarov U.A.

Abstract. We consider the problem of testing the goodness of fit of a continuous
distribution to a set of observations grouped into equal probability intervals. We are
interested in a class of tests based on symmetric statistics, which are defined as
the sum of a function of interval-frequencies. The effect of changing of the number
of intervals on the Pitman efficiency for a family of contamination alternatives is
studied. It is assumed that the number of intervals increases asymptotically as the
number of observations grows.

Keywords: Asymptotic efficiency, chi-square statistic, goodness of fit,
multinomial distribution, power divergence statistics.
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1 Introduction

Consider the classical problem of testing the goodness of fit of a sample of size
n has come from an absolutely continuous distribution Fy. Through probability
integral transformation z — Fy(z) this problem reduces to testing for uniformity
over [0, 1], and hence without loss of generality we will assume that Fo is Uniform
[0, 1] distribution. So, we consider the null hypothesis Ho : f(z) =1, x € [0, 1], versus
a sequence of contamination alternatives:

Hy: f(x) =14 6(x)gn (), (1.1)

1

where §(n) — 0, as n — oo, [ gn(x)dz =0, 0 < inf, ||gn||z < sup,, ||gnllec < 00 ||-]]
0

denotes the supremum norm, ||.||2 is the L3[0, 1] norm.

Remark 1.1. These alternatives converge to Ho with a rate determined by §(n),
whereas function g,(z) defines the path along which one goes from alternative to
hypothesis. For the asymptotic efficiency of h-tests the actual direction of approach
to the hypothesis is immaterial, but the rate of convergence plays a role. Therefore,
without loss of generality and to keep future notation simple we shall assume that
llgnll2 = 1.

Assume that a set of n observations are grouped into N equal probability
intervals, and we consider tests based on the symmetric statistics of the form

Sty =S hm), (1.2)
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where h is a nonlinear real-valued function defined on the non-negative axis,
M1,...,nn is the random vector of frequencies of intervals. Assume that the large
values of Sf{, ~ reject the hypothesis. The test based on SLL’ ~ is called h-test for
brevity.

An important flexible sub-class of statistics (1.2) is the class of Power Divergence
Statistics (PDS) of Creese and Read [1], where h(z) = hq(x) where A\,,,x = n/N,

ha(z) = 2(d(d+ 1)) 'z[(x/Ann)* = 1], d>—1,d #0 else

ho(®) = 2alog(®f Xn.av)- (I.8]
We emphasis the following important variants of statistics (1.2): the PDSs

N
(M = An,n)?, AN =2 1mlog(nm/An,n) and

m=1

3¢
2
I
>
g1
2}—‘
3
\gE

Ty = Z Viim = \/An,N) (1.4)

which are the chi-square statistic, the log-likelihood ratio statistic and the Freeman-
Tukey statistic, respectively; and the count statistics (CS)

N N
i = Zl{nm =¥}, 20, = Zl{nm >1},1>1, and
m=1 m=1

=Y (m — DI{nnm > 1}, (1.5)

m=1

where I{-} denotes the indicator function, which are respectively, the number of
intervals consisting exactly r and at least [ observations, and the number of collisions
(that is, the number of observations that we observe in intervals already containing
observations). These CS have been considered in the literature in various contexts;
see, for instance, L’ecuyer et al [7].

Our objective in this paper is to compare the performance of two h-tests in term
of relative Pitman efficiency, the approach, that is probably the most widely used in
statistical inference. In the method of grouped data the problem of choice of number
of intervals is still of interest. There have been many attempts to resolve the problem.
Among many others we refer to Quine and Robinson [9], who investigated the effect
of different choice of number of classes in Pitmann’s and Bahadur’s efficiencies of
the chi-square and log-likelihood ratio tests. In this article we extend the results on
Pitman efficiency of Quine and Robinson (1985) to the class of h-tests.
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2 Results

Our results based on the central limit theorem for statistics (1.3). In turn proof of
such limit result is based on well-known fact that the distribution of random vector
of frequencies (71, ...,m~) can be represented as the joint conditional distribution of
independent random variables (&1,...,&n) given & + ... + &n = n, where &, is a
Poisson random variable with parameter np,,,

m/N

P = N"Y(1L+ 6(n)Anm), Apn = N / Gl =Ty N (2D

(m-1)/N

where maxm |Ap,m| < ¢ < 00, Api+...4+Apn =0 and N~ (A2 +.. +A2 y) =1

In what follows we adopt the following notation: £ ~ Poi(\) stands for "a r.v. £
has Poisson distribution with parameter A > 07;&,&1,...,&n are independent r.v.s
such that & ~ Poi(A,,~) and &, ~ Poi(npm), where \,, v = n/N is the average
of observations per intervals; ®(u) denotes a standard normal distribution function;
c; is a positive constant, may not the same in each its occurrence; all asymptotic
statements are considered as n — oo. We are concerned with the case where N =
N(n) — oo as n — co.

Let Pi,EiSZ7 ~ and VariSf,f, ~ be the probability, expectation and variance of
S,ﬁf, ~, respectively, counted under H;,7 = 0, 1. Set

9(&) = h(€) — ER(§) = rn(§ = AN ), mn = A, ycov(h(§), §)

o°(h) = Varg(§) = Varh(€)(1 — corr®(h(£),£)).
The following proposal is the basis for studying the Pitman asymptotic efficiency
of h-tests.

Proposition 2.1.

Assume
Ly (h) = E|g(&)]?c®(h)sqrtN — 0 (2:2)

and sequences of alternatives Hi, as in (1.1). Then
P{S} n < uoin(h)VN 4+ NA; o (h)} = ®(u) +o(1), i =0,1,... (2.3)
and if additionally d(n) = 0()\;7‘%2) then

Zn,n (h) 1= VN(A1,n(h) = Ao,n(h)) /00, (h) =

= \/n)\n,N/262(n)p(SZ,N,)\n,N)(l + (1)), (2.4)

where
N

N
Ain(h) = N7' D" Eib(&m), 02n,(h) = N7V Varig(ém),

m=1
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03 u(h) = 02w (W) (L + 0(1)) = o> (A)( + o(1)),

]

p(Sn. v, An,w) = corr(h(€) — 14&, € — (2hn, N + 1)€). (2.5)

The asymptotical normality result (2.3) follows from Theorem 2 of Mirakhmedov
[8]. Equality (2.4) can be derived by applying the Maclaurin expansion of (1 +
x)kern.NT in

Al,n(h) = % 2221 ZZO:() Tk ()‘nyN)(l I Em)ke_An’Nsm )
where mx(\) = \*e k!, em = 6m(n) AL, m.

In particular, from Proposition 2.1 and well-known theorem on convergence of
moments it follows that A; (k) and o7, (h) are the asymptotic value of N"'E; S v
and N _1VariSZ7 ~, respectively.

Remark 2.1. In fact, by the grouping data the original problem testing
uniformity against alternatives (1.1) is reduced to the problem of testing of uniformity
of a multinomial distribution against sequences of alternatives (2.1). In context of
this we emphasis that the condition (2.2) is fulfilled for the sparse multinomial
distributions, i.e. A x — X € (0,00) if E|h(£)]* < oo, and for the very sparse
multinomial distributions, i.e., when A, n — 0 if A?h(0) # 0, where Ah(z) =
h(x 4+ 1) — h(x). For instance, arbitrary PDS and the CS ¢y, pu-, r = 1,2,... and
wi, | = 1,2 satisfy this condition. But for the dense multinomial distributions, i.e.,
when A\, N — o0, the condition (2.2) may impose an additional condition to An, ~.
For instance, (2.2) is fulfilled in this case for every PDS, while, for example, for CS
Cny Wry 7 > 0 and ¢, the (2.2) imposes condition A, v —In N —Inln N — —co and
An,N —In N — —o00, respectively.

Next, if A,y — 0 and statistics such that A?h(0) # 0 then

An.N (A3h(0)
6 A2h(0)
and if \,, x — oo then for PDS with parameter d > —1, see(1.3),

p(SE N, Ann) =1— )+ O\ n), (2.6)

(d—1)*

SE  AaN)=1—
p( N ;N) 6)\n,N

+ 0N %) (2.7)
But for the CS (1.5) p(S} ny An,n) = 0(1) if An,n — 00
Remark 2.2. Functional p(SZ, N> An,N) Plays an important role in determining

the asymptotic properties of h-tests satisfying (2.1). Its sense is clarified by the fact
that if (2.2) is fulfilled, then

p(Sn, N An,) = corro(S v, xw) (1 + o(1))

See, Lemma of Ivchenko and Mirakhmedov [6]. In what follows we shall consider
statistics S,’,f’ ~ which satisfy Proposition 2.1 and |p(S7};7 ~N»An,n)| is bounded away
from zero.
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Let’s turn to the problem of comparison of two tests in term of Pitman’s
asymptotic relative efficiency. Let {11, } and {1z, } be two sequences of test statistics
for testing a hypothesis Hy. Assume that the sequence of alternatives Hi, converges
to Hp at such a rate that the power of the test of size a > 0 using the statistic 71,
based on sample size n tends to 8 € (a,1) as n — oco. Let n’ be the sample size
needed for the power of the size o test based on statistics 75, under Hi, also tend
to B as n’ — oco. Assume that lim(n'/n) = e exist and do not depend on particular
choice of n’. Then this limit is the Pitman efficiency of T, wrt Ts,, viz.,

PE(T1n, Ton) = lim(n'/n).

Define efficacy of the test based on statistic T, as e(T},) = u>/o7, where ur
and o2 are the mean and variance of the limiting normal distribution under the
alternatives when the test statistic 7, have been normalized to have limiting standard
normal distribution under the hypothesis. Then due to Fraser [2]

PE(T1n,T2n) = €(T1n)/€(T2n) (28)

Assume that the statistics SZ, ~ and SZ, ~ satisfy condition (2.2). Let’s consider
Pitman efficiency of h-test wrt f-test. Let o, n(h) and B, n(h) denote the size and
the power of h-test, respectively.

an N (h) = Po{Sk n > Ua00,n(h)VN + NAg n(h)} =

= ®(—ua) +0(1) = a+o(1), (2.9)
where a > 0, u, = ® (1 — ). Next, if alternatives (1.1) is such that
§(n) = co(nAn.n) "4, (2.10)
then
BN (h) = P{S} n > ta00n(h)VN + NAon(h)} =
IR
= Pl{ST}LL,N L ( )(Ua + zn,n(h)) =

Ul,n(h)
= ®(\/nAn.n /2682 (0)|p(Sh n, Anv)| — Ua) (1 + 0(1)) =

= ®(colp(Sn,n, Mn,¥)/V2 = ua) (L +0(R)) = B € (1) (2.11)

Gvanceladze and Chibisov [3| have shown for a similar scheme to ours that the
power of the tests symmetrically depending on interval-frequencies tends to the
significance level as n — oo whenever N — oo for §(n) = n~'/2. A refinement
of their result follows from the second line of equation (2.11), which implies that the
power of the h-tests tend to the significance level as n — oo whenever N — oo for

6n = o((n?/N)™H%).
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Further, from Proposition 2.1 one can easily observe that the efficacy of the h-
test under alternatives Hi,, where §(n) is defined as in (2.10) is equal to the limiting
value of T, n (h), see (2.4), that is e(S: ) = c5limp* (S} .., An,n)/2. Thus, this fact
together with (2.8) gives the following.

Theorem 2.1. Let for statistics 527 ~ and S{:, ~» Which based on the same number
of intervals, the condition (2.2) be fulfilled and alternatives Hi, (1.1) converge to Ho
at the rate defined as (2.10). Then

p2<Sg,N7 )‘TL,N)

(S5 s An.)

PE(Sy n, 55 y) =lim

It follows from (2.5) that |p(X7 n» An,n)| = 1. Hence
PE(SZ,N7 X?Z’l,N) = llme(ST}LL,Na )\n,N) S 1

That is, Pitman efficiency of arbitrary h-test satisfying (2.2) wrt chi-square test
less than or equal to 1. Specifically, PE(S’; N Xi, ~) < 1, if A\, n is bounded away
from zero and infinity. Nevertheless, computations shows that even in this situation
maximum Pitman efficiency of the PDS with parameter d € [0, 2] are very close to 1
(see below Table 1). This fact extends corresponding results of Holst [4] and Ivchenko
and Medvedev [5]. Further, consider class of PDS, i.e., hq-tests, where hg is defined
as (1.3), then PE('SYZ::ZN?XEL,N) = 1 if A,y — 00, since (2.7). This is an extension
of the statement (1.3) of Quine and Robinson [9] to the class of PDS, where such a
fact is presented for the case Szd = An, log-likelihood ratio statistic. At last, for
the class of h-tests such that A%h(0) # 0 we have PE(S) v, Xa.n) = 1 if A*h(0) #0
and A\, n — 0, since (2.6). This case is of interest for the testing of uniformity of a
multinomial distribution against alternatives (2.1) satisfying (2.10), see, for instance,
L’ecuyer et al [7] .

Consider now again h-test of size a, but based on statistic Sﬁ’ ~7> where N’ is
another number of intervals. In this case we assume that the number of intervals
N = N(z), taken as a function of the continuous variable x, is regularly varying with
index g € (0,2), i.e. N(ax)/N(x) = a? as © — oo, for all a > 0.

Theorem 2.2. Let Ly (h) — 0 (see (2.2)) then
PE(S% n,SF ) = /379 (2.12)
if N'(n)/N(n) — c € (0,00), and
PE(S} n,Sf i) = 00 (2.13)
if N'(n)/N(n) — co.

Proof. According to Pitman’s approach &(n), the rate of convergence of
alternatives Hi, to the hypothesis, must be chosen so that the power for h-test
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of size a > 0 has a limit 8 € (a, 1). So, for statistic S} y the relations (2.9), (2.10)
and (2.11) are valid. Let n’ is a sample size such that the power of the size « test
based on statistic S,’;/,N/ under Hi, (1.1) also tends to 3 as n’ — oo. That is for
the statistic S}/ y the equations (2.9), (2.10) and (2.11) still hold when n and N
are replaced by n’and N'. Tt is clear that n’ = n/(n). Due to (2.10) in order for the
test based on S, ., to have the same asymptotic power as in (2.11) under Hi,, (1.1)
satisfying (2.10) we must choose n’ so that

N(n)/n* ~ N'(n')/n'? (2.14)

since p* (S} n, An>n) and p*(Sk ns, Adwsn/) bounded away from zero, and, on the
other hand, the rate of convergence of alternatives Hi, remaining unchanged as in
(2.10).

We will now use arguments similar to those of Quine and Robinson [9]. Note that
if N'(n)/N(n) — ¢ € (0,00) then N'(n')/N(n’) — c also. By (2.14) and that N(z)
is regularly varying function with index ¢ we have

N(n)/n?® ~c¢N(an')/n'* ~ N(an')/(an')?, where a = ¢ /@9, (2.15)

The function R(x) = N(zx)/x” is regularly varying with index ¢ — 2 < 0, therefore
R(rzz)/R(z) — r772? as x — oo, if 7, — 7 € [0,00], where 0 < r, < oo. Let a
sequence of n’'/n have a sub-sequence for which n'/n — b € [0,00], then for this
subsequence

R(an)/R(n) = R((an’'/n)n)/R(n) — (ab)?>. (2.16)

Since (2.15) (ab)?2 = 1, that is b = ¢/* %, do not depend on particular
sub-sequence. Thus for whole sequence n’/n — ¢/*79 | and hence (2.12) follows.
Let now N’'(n)/N(n) — oo. Then for arbitrary large C' > 0 there exists n’ =
n'C such that N'(n’) > CN(n’), therefore from (2.11) we obtain N(n)/n®> ~
N'(n')/n'? > CN(n')/n'?* ~ N(An')/(An’)?, where A = C~/(2=9 Thus there
exists a subsequence of n'/n for which (2.16) hold with a replaced by A. But
now (Ab)9~% > 1 and hence b > A™' = CY/79 This mean that asymptotically
n' > CY2=9p, giving (2.13). Proof of Theorem 2.2 completed.

Theorem 2.2 extends statements (1.1) and (1.2) of Quine and Robinson [9], where
equalities (2.12) and (2.13) were derived for x% and Ay statistics (see (1.3)) to the
class of h-tests satisfying condition (2.2). So, all conclusions of Quine and Robinson
([9] on effect of changing the number of intervals to Pitman efficiency of chi-square
test still hold for the class of h-tests. In particular, if we deal with the contamination
alternatives the number of intervals should not be too large.

3 Some computational results

It is seen in fact that the Pitman efficiency of h-test depend on the asymptotic
behavior of the parameter A, n and |p(Sk n,An,n)|, the asymptotical correlation



Mirakhmedov Sh.M., Bozarov U.A. 135

coefficient under the hypothesis between the test statistic SZ, ~ and the chi-square
statistic; so a statistic that is more correlated with the chi-square statistic should be
considered preferable. For the PDS in the following Table 1 the values of |p(ha, )|
are presented for various A and d > —1.

Table 1. The value of | p(SZfN, A)| for different d and .

A

d 0.05 0.1 0.5 1.0 15 2.0 3.0 10 20 50
-2/3 0.9933 0.9838 0.9400 0.8768 0.8314 0.7811 0.7266 0.9257 0.9740 0.9900
-1/2 0.9942 0.9838 0.9402 0.8909 0.8545 0.8321 0.8001 0.9480 0.9803 0.9920
-1/3 0.9950 0.9839 0.9620 0.9192 0.89891 0.8743 0.8573 0.9615 0.9834 0.9940
0 0.9970 0.9940 0.9720 0.9525 0.9400 0.9350 0.9369 0.9793 0.9897 0.9960
1/3 0.9983 0.9840 0.9845 0.9758 0.9699 0.9714 0.9797 0.9928 0.9961 0.9980
1/2 0.9989 0.9979 0.9900 0.9898 0.9815 0.9791 0.9879 0.9972 0.9993 0.9985
2/3 0.9999 0.9924 0.9901 0.9900 0.9930 0.9945 0.9961 0.9977 0.9996 0.9990
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3/2 0.0984 0.9844 0.9900 0.9901 0.9930 0.9925 0.9879 0.9977 0.9997 0.9989
2 0.9917 0.9843 0.9618 0.9617 0.9583 0.9632 0.9716 0.9883 0.9929 0.9960
572 09759005108 (-92 208 (-0 02 () 923788 00323 0:03 SO0 07048 (108358 () 0020
3 0.9449 0.9391 0.8631 0.8627 0.8876 0.8933 0.8981 0.9526 0.9708 0.9880
4 0.7917 0.8049 0.7443 0.7495 0.7736 0.7921 0.8164 0.8989 0.9392 0.9720
S 0.6323 0.6708 0.6047 0.6225 0.6582 0.6741 0.7103 0.8363 0.9012 0.9520

Table shows that the PDS with d < 5/2 are preferable than that of d > 5/2 for
all range of A. While this property of PDS more pronounced for the very sparse
and dense models. It is surprise that for the moderate A\ the PDS with parameter
d € [1/3,2] appears to be asymptotically more correlated with chi-square statistic
than the log-likelihood ratio statistic, where d = 0. But log-likelihood ratio statistic
exhibit high limiting correlation with chi-square-statistic than the PDS with d<0, i.e.
satisfying Crame’r condition, 0.9335 < p(ho,A\) < 1 and argmin p(ho, A) = 2.3750.
The PDS CRn(2/3) exhibit highest limiting correlation with chi-square-statistic for
all range of A : 0.9900 < p(h2/3,\) < 1. This confirms recommendation of Cressie
and Read [1].
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