
2022 №9

2011 йилдан чиқа бошлаган

TOSHKENT TIBBIYOT AKADEMIYASI AXBOROTNOMASI

ВЕСТНИК

ТАШКЕНТСКОЙ МЕДИЦИНСКОЙ АКАДЕМИИ

Тошкент

СОДЕРЖАНИЕ СОПТЕПТ

	001112111	
НОВЫЕ ПЕДАГОГИЧЕСКИЕ ТЕХНОЛОГИИ	NEW PEDAGOGICAL TECHNOLOGIES	Стр.
Базарбаев М.И., Сайфуллаева Д.И., Латипова К.Д. ЦИФРОВАЯ МЕДИЦИНСКАЯ ЭКОСИСТЕМА: ГЕНЕ- ЗИС И ПЕРСПЕКТИВЫ РАЗВИТИЯ	Bazarbaev M.I., Saifullaeva D.I., Latipova K.D. DIGITAL MEDICAL ECOSYSTEM: GENESIS AND DEVELOPMENT PROSPECTS	9
Бобоева З.Н. ТИББИЙ ТАЪЛИМДА ТАЛАБАЛАРДА КРЕАТИВЛИКНИ РИВОЖЛАНТИРИШ ВОСИТАЛАРИ	Boboeva Z.N. MEANS OF DEVELOPING CREATIVITY IN STUDENTS IN MEDICAL EDUCATION	14
Рахимов Б.Т., Абдужаббарова У.М. ЗНАЧЕНИЕ ФИЗИЧЕСКИХ И БИОФИЗИЧЕСКИХ ПРОЦЕССОВ ПРИ ИЗУЧЕНИИ МЕДИЦИНЫ	Rakhimov B.T., Abdujabbarova U.M. THE IM- PORTANCE OF PHYSICAL AND BIOPHYSICAL PRO- CESSES IN THE STUDY OF MEDICINE	17
Убайдуллаева В.П. ФИЗИКА ЎҚИТУВЧИЛАРИНИНГ ТУРЛИ ДАРАЖАДАГИ КОМПЕТЕНЦИЯЛАРИНИ РИВОЖЛАНТИРИШДА КОМПЕТЕНЦИЯВИЙ ЁНДАШУВГА АСОСЛАНГАН ТАЪЛИМНИНГ ЎЗИГА ХОС ХУСУСИЯТЛАРИ	Ubaydullayeva V.P. PECULIARITIES OF TEACHING BASED ON THE COMPETENCE-BASED APPROACH IN THE DEVELOPMENT OF DIFFERENT LEVELS OF COMPETENCE OF PHYSICS TEACHERS	20
Xalmuxamedov B.T., Nurillaeva N.M. TIBBIYOT UNI- VERSITETLARI TALABALARIGA TELETIBBIYOT VA EL- EKTRON POLIKLINIKA KOʻNIKMALARINI OʻQITISH	Khalmukhamedov B.T., Nurillaeva N.M. TRAINING OF TELEMEDICINE AND ELECTRONIC POLYCLINIC SKILLS FOR MEDICAL UNIVERSITY STUDENTS	23
Xalmuxamedov B.T., Nurillaeva N.M. TIBBIY OLIY TA`LIM MUASSASALARIDA TALABALARINING OʻQUV JARAYONIGA TELETIBBIYOTNI KIRITISH AHAMIYATI VA JORIY ETISHNING XUSUSIYATLARI	Khalmukhamedov B.T., Nurillaeva N.M. FEATURES AND SIGNIFICANCE OF THE INTRODUCTION OF TELE- MEDICINE IN THE LEARNING PROCESS OF MEDICAL UNIVERSITY STUDENTS	28
0Б30РЫ	REVIEWS	Стр.
Абдуллаева М.И., Иноятова Ф.Х., Муминова Г.А., Асланов М.Н. НЕЙРОДЕГЕНЕРАТИВ КАСАЛ- ЛИКЛАРДА ИММУНКУЛУСНИНГ РОЛИ	Abdullaeva M.I., Muminova G.A., Aslanov M.N., Inoyatova F.Kh. THE ROLE OF IMMUNLUCUS IN NEURODEGENERATIVE DISEASES	33
Нурузова З.А., Шадманова Н.А., Ёдгорова Н.Т. ЮҚУМЛИ КАСАЛЛИКЛАР ҚЎЗҒАТУВЧИЛАРИНИ МИКРОБИОЛОГИК ТАШХИСОТИДА ЗАМОНАВИЙ ПРЕСПЕКТИВ УСУЛЛАРНИНГ АХАМИЯТИ ВА ИМКОНИЯТЛАРИ	Nuruzova Z.A., Shadmanova N.A., Yodgorova N.T. THE ROLE AND CAPABILITIES OF MODERN PROMISING METHODS IN THE MICROBIOLOGICAL DIAGNOSIS OF INFECTIOUS DISEASE CAUSATIVE AGENTS	40
Сабирова Р.А., Икрамов А.Ш., Турсунов Д.Х. МОЛЕ- КУЛЯРНЫЕ И КЛЕТОЧНЫЕ МЕХАНИЗМЫ ДЕЙСТВИЯ СОРБЕНТОВ, ПРИМЕНЯЕМЫХ В МЕДИЦИНЕ	Sabirova R.A., Ikramov A.Sh., Tursunov D.Kh. MOLEC- ULAR AND CELLULAR MECHANISMS OF ACTION OF SORBENTS USED IN MEDICINE	45

www.tma-journals.uz

ЭКСПЕРИМЕНТАЛЬНАЯ МЕДИЦИНА	EXPERIMENTAL MEDICINE	Стр.
Рашидова С.Ш., ГалиеваЗ.И., Иноятова Ф.Х., Милушева Р.Ю. ПРОИЗВОДНЫЕ ХИТОЗАНА В КОРРЕКЦИИ ГИПЕРГЛИКЕМИИ И ГИПЕРЛИПИДЕМИИ	Rashidova S.Sh., Galieva Z.I., Inoyatova F.Kh., Milusheva R.Yu. CHITOSAN DERIVATIVES IN THE COR- RECTION OF HYPERGLYCEMIA AND HYPERLIPIDEMIA	54
КЛИНИЧЕСКАЯ МЕДИЦИНА	CLINICAL MEDICINE	Стр.
Абдусаттарова Г.Ш., Маджидова Е.Н., Тураева Г.Н. КЛИНИЧЕСКИЕ ОСОБЕННОСТИ ФЕБРИЛЬНЫХ СУ- ДОРОГ, НА ОСНОВЕ ВЗАИМОСВЯЗИ НЕВРОЛОГИ- ЧЕСКОГО И СОМАТИЧЕСКОГО СТАТУСА У ДЕТЕЙ	Abdusattarova G.Sh., Madjidova E.N., Turaeva G.N. CLINICAL FEATURES OF FEBRILE SEIZURES, BASED ON THE RELATIONSHIP OF NEUROLOGICAL AND SOMATIC STATUS IN CHILDREN	57
Акилов Ф.А., Худайбергенов У.А., Мирхамидов Ж.Х., Худайбердиев Х.Б., Жумаев М.Ё. ХОРАЗМ ВИЛОЯТИ АХОЛИСИ ОРАСИДА ПРОСТАТА ХАВФСИЗ ГИПЕРПЛАЗИЯСИНИНГ ЭПИЕДМИОЛОГИЯСИ	Akilov F.F., Khudaybergenov U.A., Mirkhamidov J.X., Khudayberdiyev Kh.B., Jumayev M.Y. EPIDEMIOLOGY OF BENIGN PROSTATIC HYPERPLASIA IN KHORESM REGION	60
Алиев Ш.Р, Залялиева М.В., Алиев А.Ш., Джураева З.Б. ПАТОГЕНЕТИЧЕСКИЕ АСПЕКТЫ ТЯЖЕЛОГО ТЕЧЕНИЯ АКНЕ	Aliyev Sh.R., Zalyaliyeva M.V., Aliyev A.Sh., Djurayeva Z.B. AKNENI OGʻIR KECHISHINI PATOGENETIK ASPEKTLARI	63
Атаходжаева Ф.Т., Шукурова У.А., Кобилжонова М.У. ВЛИЯНИЕ БЕРЕМЕННОСТИ НА РАСПРОСТРА- НЁННОСТЬ И ТЕЧЕНИЕ ХРОНИЧЕСКОГО РЕЦИДИ- ВИРУЮЩЕГО АФТОЗНОГО СТОМАТИТА	Atakhodzhaeva F.T., Shukurova U.A., Kobilzhonova M.U. EFFECT OF PREGNANCY ON THE PREVALENCE AND COURSE OF CHRONIC RECURRENT APHTHOUS STOMATITIS	66
Ахмедова Д.Б. ВОЗМОЖНОЕ ЗНАЧЕНИЕ ЛЕКАР- СТВЕННЫХ ПРЕПАРАТОВ РАСТИТЕЛЬНОГО ПРОИС- ХОЖДЕНИЯ ПРИ ПНЕВМОКОНИОЗАХ	Axmedova D.B. POSSIBLE SIGNIFICANCE OF HERBAL MEDICINES IN PNEUMOCONIOSIS	70
Джумабаев Э.С., Мирзаев К.К. МОРФОФУНКЦИО- НАЛЬНЫЕ НАРУШЕНИЯ ПРИ ОГНЕСТРЕЛЬНОЙ ТРАВМЕ КОНЕЧНОСТИ И ИХ КОРРЕКЦИЯ МЕТО- ДАМИ РЕГИОНАЛЬНОЙ ЛИМФАТИЧЕСКОЙ ТЕРА- ПИИ (клинико-экспериментальное исследование)	Dzhumabaev E.S., Mirzaev K.K. MORPHOFUNC-TIONAL DISORDERS IN CASE OF A GUNSHOT INJURY OF A LIMB AND THEIR CORRECTION BY METHODS OF REGIONAL LYMPHATIC THERAPY (clinical and experimental study)	73
Ибодуллаев З.Р., Карахонова С.А. ЭФФЕКТИВНАЯ ПСИХОКОРРЕКЦИЯ ПРИ НЕВРОТИЧЕСКОМ РАС- СТРОЙСТВЕ	Ibodullayev Z.R., Karakhonova S.A. EFFECTIVE PSY-CHOCORRECTION IN NEUROTIC DISORDER	76
Камилова И.А., Ахмедова Г.А., Парвизи Н.И., Кобилжонова М.У. ВЛИЯНИЕ ПАТОГЕНЕТИЧЕСКОЙ ТЕРАПИИ ЦЕРВИКАЛЬНОЙ ИНТРАЭПИТЕЛИАЛЬНОЙ НЕОПЛАЗИИ НА КЛИНИЧЕСКОЕ СОСТОЯНИЕ ШЕЙКИ МАТКИ И ВЛАГАЛИЩА	Kamilova I.A., Akhmedova G.A., Parvizi N.I., Kobilzhonova M.U. INFLUENCE OF PATHOGENETIC THERAPY OF CERVICAL INTRAEPITHELIAL NEOPLASIA ON THE CLINICAL STATE OF THE CERVIX AND VAGINA	80
Маджидова Е.Н., Абдусаттарова Г.Ш., Тураева Г.Н. КЛИНИКО-НЕВРОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ВЕ- ГЕТАТИВНЫХ НАРУШЕНИЙ У ПОДРОСТКОВ	Majidova E.N., Abdusattarova G.Sh., Turaeva G.N. CLINICAL AND NEUROLOGICAL FEATURES OF AUTO-NOMIC DISORDERS IN ADOLESCENTS	84
Маткаримова Д.С., Сабирова Ш.Г. МОЛЕКУЛЯРНО- ГЕНЕТИЧЕСКИЕ ОСНОВЫ РАЗВИТИЯ ПАТОЛОГИЙ ПЛАСТИНЧАТОЙ ЛИНИИ ГЕМОСТАЗА	Matkarimova D.S., Sabirova Sh.G. MOLECULAR-GENETIC BASES FOR THE DEVELOPMENT OF PATHOLOGIES OF THE PLATE LINE OF HEMOSTASIS	87
Мирварисова Л.Т., Зуфаров П.С., Акбарова Д.С., Файзиева Н.Н., Рустамова Ж.Т., Мирворисова З.Ш.,	Mirvarisova L.T., Zufarov P.S., Akbarova D.S., Fayzieva N.N., Rustamova J.T., Mirvorisova Z.Sh., Asatova N.B.	91

нагрузки по сравнению с мальчиками. Состояние вегетативного гомеостаза у мальчиков с ВСД характеризуется исходной ваготонией (95%) в сочетании с преимущественно гиперсимпатикотоническим типом вегетативной реактивности (47,6%) и не имеет достоверных отличий по сравнению с девочками. Заключение: Подростки относятся к группе риска по развитию психосоматической патологии в будущем и поэтому нуждаются в особом диспансерном наблюдении и проведении. The state of autonomic homeostasis in boys with VSD is characterized

by initial vagotonia (95%) in combination with a predominantly hypersympathicotonic type of autonomic reactivity (47.6%) and does not have significant differences compared to girls. Conclusion: Adolescents are at risk for the development of psychosomatic pathology in the future and therefore need special dispensary observation and conduct.

Ключевые слова: подростковый период, вегетативные нарушение, синькопалные состояние, головные боли, симпатикотонус, ваготонус.

UDK: 616.151-056.4:577.21-074

MOLECULAR-GENETIC BASES FOR THE DEVELOPMENT OF PATHOLOGIES OF THE PLATE LINE OF HEMOSTASIS

Matkarimova D.S., Sabirova Sh.G.

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ ОСНОВЫ РАЗВИТИЯ ПАТОЛОГИЙ ПЛАСТИНЧАТОЙ ЛИНИИ ГЕМОСТАЗА

Маткаримова Д.С., Сабирова Ш.Г.

GEMOSTAZNING PLATLIK CHINTISI PATOLOGIYALARINI RIVOJLANISHNING MOLEKULAR-GENETIK ASOSLARI

Matkarimova D.S., Sobirova Sh.G.

Tashkent Medical Academy

Резюме. Цель исследования. Оценить особенности распространенности и вклад полиморфных вариантов генов TNF-а (rs1800629) в формировании иммунной тромбоцитопении (ИТП) и GP IIb (T2622G) в развитии дизагрегационной тромбоцитопатии (ДТП).

Материал и методы: В исследование включено 89 пациентов с ИТП и 71 пациентов с ДТП (медиана возраста - 41±1,7), для сравнения группы контролем послужили 48 условно-здоровые доноры (медиана возраста - 42,0±1,4) без патологии системы гемостаза. Детекцию полиморфизмов генов TNF-α (rs1800629) и GP IIb (T2622G) проводили методом SNP-ПЦР.

Результаты и их обсуждение. Носительство гетерозиготного G/A генотипа полиморфизма rs1800629 гена TNF-α ассоциирован высоким риском развития ИТП, тогда как гомозиготный генотип G/G выступает в качестве протективного генотипа в патогенезе ИТП. Вместе с тем, гетерозиготный генотип T/G полиморфизма T2622G гена GPIIb в основной группе и подгруппе НДТП статистически не значимо ассоциирован с развитием заболевания. Полученные результаты могут быть использованы клиницистами при скрининге и прогнозировании ИТП и ДТП.

Ключевые слова: полиморфизм гена, TNF-α (rs1800629), GPIIb (T2622G), иммунная тромбоцитопения (ИТП), дизагрегационная тромбоцитопатия (ДТП), аллель, генотип, патогенез.

Xulosa. Tadqiqot o'tkazishdan maqsad. TNF- α (rs1800629) genining polimorf variantlarini immun trombositopeniya (ITP) shakllanishida va GP IIb (T2622G) genining polimorf variantlarini dizagregation trombositopatiya (DTP) rivojlanishidagi hissasi va tarqalganlik darajasini baxolash.

Material va usullar: Tadqiqot uchun ITP bilan kasallangan 89 va DTP bilan hastalangan 71 nafar bemorlar (oʻrtacha yoshi 41±1,7), taqqoslash maqsadida nazorat guruhiga gemostaz tizimida patologiyasi boʻlmagan 48 nafar shartli-sogʻlom shaxslar (oʻrtacha yoshi 42±1,4) olindi. TNF-α (rs1800629) va GP IIb (T2622G) genlari polimorfizmlari deteksiyasi SNP-PZR usuli yordamida amalga oshirildi.

Natijalar va muxokama. TNF-α genining rs1800629 polimorfizmi geterozigotali G/A genotipining mavjudligi ITP yuqori rivojlanish havfi bilan bogʻliq, G/G gomozigotali genotipi esa ITP patogenezida protektiv genotip sifatida ifodalanadi. Shu bilan birga, GPIIb geni T2622G polimorfizmining T/G geterozigotali genotipi asosiy guruhda va NDTP guruhchasida kasallik rivojlanishida statistik ahamiyati past darajada bogʻliqlik aniqlandi. Olingan natijalar ITP va DTP skriningida va bashoratida klinikada amaliyotda qoʻllanilishi mumkin.

Kalit so'zlar: gen polimorfizmi, TNF- α (rs1800629), GPIIb (T2622G), immun trombositopeniya (ITP), dizagregation trombositopatiya (DTP), allel, genotip, patogenez.

Relevance: The increasing interest of modern researchers is involved in the study of the mechanisms of the formation of pathologies of the platelet link of hemostasis, such as immune thrombocytopenia ITP - a primary decrease in the number of platelets (up to 100×10^9 /l and less) and disaggregation thrombocytopathy (RTP - decreased platelet aggregation function), which are united by a common for these diseases - hemorrhagic syndrome characterized by an increased risk of bleeding [1,3,9,11].

The studies carried out to date to study these pathologies have expanded the understanding of many aspects of their development. However, many mechanisms of their formation are still little known.

In recent years, the growing interest of both domestic and foreign scientists in order to uncover unclear aspects of the pathogenetic mechanisms of ITP and disaggregation thrombocytopathy is manifested in the study of the role of genetic polymorphisms in the pathogenesis of these diseases. Today, according to modern literary data, it is known that genetic factors play an important role in the genesis of ITP and DTP [5,6,7,10].

Today it is known that a large number of genes are involved in platelet differentiation, mutations in one of these genes can potentially lead to thrombocytopenia and thrombocytopathy due to decreased formation, shortened life expectancy and impaired platelet function [5,6,7].

In recent years, in the development of these pathologies, foreign researchers increasingly emphasize the significant role of such genetic polymorphisms as tumor necrosis factor (TNFa) and platelet glycoprotein (GP IIb).

At the same time, the existing data on the study of the relationship of TNFa with the formation of ITP, as well as GP IIb with the development of DTP, have ambiguous conclusions [1,2,4,8,12]. In this regard, additional studies to study the contribution of the rs1800629 polymorphism of the TNF- α gene to the risk of developing ITP and GP IIb (T2622G) in the development of DTP seems to be interesting and necessary.

Purpose of the study. To assess the features of the prevalence and the contribution of polymorphic variants of TNF- α genes (rs1800629) in the formation of immune thrombocytopenia (ITP) and GP IIb (T2622G) in the development of dysaggregative thrombocytopathy (DTP).

Material and methods: The study included 89 patients with ITP (median age - 41 ± 1.7) and 71 patients with DTP (median age - 31.4 ± 1.18), who were on outpatient and inpatient treatment at the Republican Specialized Scientific and Practical Medical Center of Hematology (RSNPMCH) in the period from 2016 to 2018. All subjects were divided into 2 groups: 1st main patients and 2nd group of comparative control (conditionally healthy donors). Each of the main group is subdivided into two subgroups: for patients with ITP ("A" -49 patients with ITP with hemorrhagic manifestations, and "B" - 40 patients with ITP without hemorrhagic manifestations); for patients with DTP (HDTP - 39 patients with a hereditary form of dysaggregation thrombocytopathy and ADTP - 32 patients with an acquired form of dysaggregation thrombocytopathy). The diagnosis of ITP and DTP was verified based on the recommendations of international experts (2009) [6].

Conditionally healthy donors without pathology of the hemostatic system were used as a comparative control (median age - 42.0 ± 1.4).

Detection of TNF- α (rs1800629) and GP IIb (T2622G) gene polymorphisms was performed by SNP-PCR on a programmable thermal cycler from Applied Bio systems 2720 (USA), using test systems of the company "Litekh" (Russia), according to the manufacturer's instructions. Mathematical analysis of the results was carried out using the statistical software package "Open Epi, Version 9.3".

Results and discussion. The observed frequency (Hobs) of genotypes of the studied polymorphisms revealed in the study in the general group of patients with ITP and DTP, as well as in the control group, corresponded to the expected distribution (Hexp) according to the Hardy-Weinberg equilibrium (P> 0.05).

The results of the frequency distribution of the G allele of the rs 1800629 polymorphism of the TNF- α gene

in the main ITP group were as follows: in the "A" subgroup - 83.7%; in "B" subgroup 83.8%, and in the control group this indicator was slightly higher (92.3%). The frequency of the A allele of the studied gene in the study group averaged 16.3%, and in the control group this indicator was much lower (7.4%).

These results indicate that in the main group the G allele ($\chi 2=6.31$; P = 0.012; OR = 0.41; 95% CI = 0.20-0.84) occurs somewhat less frequently than in the control group, while allele A, on the contrary, was more often observed in the main group ($\chi 2=6.31$; P = 0.012; OR = 2.43; 95% CI = 1.20-4.95). Analysis of the frequency distribution of the genotypes of the rs1800629 polymorphism of the TNF- α gene showed that homozygotes for the mutant allele A/A were identified in the main group (1.1%; $\chi 2=1.12$; P = 0.29), the frequency of genotypes G/A (30.3% versus 14.8%) exceeded that in the control group (14.8%), while the frequency of the G/G genotype in the main and control was 68.5% versus 85.2% (table 1).

Table 1. Frequency of distribution of alleles and genotypes of gene polymorphism TNF- α (rs1800629) in the control group and in ITP patients

		1	Allele fre	у	Genotype distribution frequency						
Group	n	G		A		G/G		G/A		A/A	
		n	%	n	%	n	%	n	%	n	%
ITP main group	89	149	83.7	29	16.3	61	68.5	27	30.3	1	1.1
"A" - subgroup	49	82	83.7	16	16.3	34	69.4	14	28.6	1	2.0
"B" - subgroup	40	67	83.8	13	16.2	27	67.5	13	32.5	0	0
Control group	81	150	92.3	12	7.4	69	85.2	12	14.8	0	0

According to the data given in table 1., it is obvious that, the differences in the frequency of occurrence of the A allele ($\chi 2=6.31$; P = 0.012; OR = 2.43; 95% CI = 1.20-4.95, respectively) and the G / A genotype (OR = 2.55; $\chi 2=5.98$; P = 0.014; 95% CI = 1.19-5.45) rs 1800629 polymorphism of the TNF- α gene between the main (ITP) and the control group are statistically significant.

In subgroups "A" and "B", the analysis of the difference in the frequency of the allele A of the rs 1800629 polymorphism of the TNF- α gene showed a statistically significant increase in more than 2.44 (χ 2 = 5.05; P = 0.024; OR = 2.44; 95 % CI = 1.10-5.40) and 2.43 times $(\chi 2 = 4.52; P = 0.03; OR = 2.43; 95\% CI = 1.05-5.59), re$ spectively. The frequency of the G/A genotype (rs 1800629) of the TNF- α gene also increased statistically significantly by more than 2.37 (OR = 2.37; χ 2 = 3.86; P = 0.049; 95% CI = 0.99-5, 67) and 2.77 times (OR = 2.77; χ 2 = 5.11; P = 0.02; 95% CI = 1.12-6.82), respectively, in subgroups "A" and "B" of patients with ITP. Consequently, the risk of developing ITP in the presence of this polymorphism of the studied gene, in general, statistically significantly increased by 2.43 (A) and 2.55 (G> A) times.

Based on the foregoing, it is obvious that against the background of a significant decrease in the carriage of the protective homozygous G / G genotype in the main group in patients with ITP diseases, there is an increase in the proportion of carriers of the heterozygous G/A genotype by about 1.7 times - up to 25.3%, which in turn indicates the presence of a reliable association between the carriage of the heterozygous G/A genotype of the rs 1800629 polymorphism of the TNF- α gene with the development of ITP.

Analyzing the severity of differences in the distribution of the frequencies of alleles and genotypes of the GPIIb gene polymorphism (T2622G) in the main group of DTP, an insignificant increase in the frequency of the G allele by 1.27 times was found (χ 2 = 0.80; P = 0.37; OR = 1.27; 95% CI: 0.75- 2.14) than in the control group.

Along with this, the frequency of occurrence of heterozygotes for the GPIIb (T2622G) polymorphism in the group of patients was less than 1-fold lower (χ 2 = 0.12; P = 0.72; OR = 0.86; 95% CI: 0.38-1.98).

At the same time, the frequency of the homozygous genotype G / G exceeded the values in the control by 1.68 times, but the differences did not reach statistical significance (χ 2 = 0.98; P = 0.32; OR = 1.68; 95% CI: 0.60-4.73) (table 2).

Table 2.

		n	Allele frequency				Genotype distribution frequency					
Nº	Group		T		G		T/T		T/G		G/G	
			n	%	n	%	n	%	n	%	n	%
1	Main group	71	76	53,5	66	46,5	24	33,8	28	39,4	19	26,8
a	HDTP	39	38	48,7	40	51,3	11	28,2	16	41,0	12	30,8
b	ADTP	32	38	59,4	26	40,6	13	40,6	12	37,5	7	21,9
2	Control group	48	57	59,4	39	40,6	17	35,4	23	47,9	8	16,7

Further analysis of the results showed that in the group of HDTP patients, the share of the G allele was recorded less in relation to the control group (48.7% versus 59.4%), while the share of the T allele was higher (51.3% versus 40.6%).

In ADTP patients, the proportion of alleles G (59.4% versus 59.4%) and T (40.6% versus 40.6%) practically did not differ from those in the control.

The results of studying the distribution of genotypes made it possible to determine a lower registration of the heterozygous genotype T/G than in the control group by 1.08 times in patients with HDTP ($\chi 2 = 0.02$; P = 0.89; OR = 1.08; 95% CI: 0.40-2.90) and less than 1 time in ADTP patients ($\chi 2 = 0.56$; P = 0.45; OR = 0.68; 95% CI: 0.25-1.86).

A more pronounced increase in the frequency of the mutant genotype G/G among the studied groups of patients with DTP was observed only in patients with HDTP, which turned out to be 2.32 times higher than in the control ($\chi 2 = 2.01$; P = 0.16; OR = 2.32; 95% CI: 0.72-7.49).

A more pronounced increase in the frequency of the mutant genotype G/G among the studied groups of patients with DTP was observed only in patients with HDTP, which turned out to be 2.32 times higher than in the control ($\chi 2 = 2.01$; P = 0.16; OR = 2.32; 95% CI: 0.72-7.49). Despite the higher registration of the frequency of the mutant genotype in the group of patients with HDTP, the difference was insignificant.

Thus, summarizing the above data from the study of the features of TNF- α gene polymorphism (rs1800629) in the control group and in the group of ITP patients, we can conclude that, there is a statistically significant high association between the carriage of the unfavorable allele A and the G/A genotype of the TNF- α gene polymorphism (rs1800629) and the development of ITP. In this connection, the carriage of the minor allele A and the unfavorable genotype G/A of the TNF- α gene polymorphism (rs1800629) can be considered as a prognostic ally unfavorable marker, contributing to the high risk of developing ITP among people of Uzbek nationality.

Moreover, the obtained results of the study on the study of the peculiarities of the distribution of allele frequencies and genotypes of genetic polymorphism GPIIb (T2622G) in road traffic accident patients and conventionally healthy persons of Uzbek nationality showed the absence of a statistically significant association of the unfavorable G allele ($\chi 2 = 1.80$; P = 0.37) and the mutant G/G genotype ($\chi 2 = 0.98$; P = 0.32) with an increased risk of hereditary and acquired forms of road traffic accidents. At the same time, a tendency towards the development of the disease was found in patients

with a hereditary form of dysaggregation thrombocytopathy (χ 2 = 2.01; P = 0.16).

Conclusions:

- 1. Carriage of the minor allele A and the heterozygous G/A genotype of the rs1800629 polymorphism of the TNF- α gene is associated with a high risk of developing ITP, which allows clinicians to use these results in screening and predicting ITP.
- 2. There was a tendency in patients with HDTP to increase the proportion of the G/G genotype of the GPIIb polymorphism (T2622G) compared with the control sample ($\chi 2 = 2.01$; P = 0.16; OR = 2.32; 95% CI: 0.72-7.49), these data indicate that this genotypic variant has a predisposing effect on the formation of disturbances in the regulation of aggregation and the development of HDTP in patients.

References:

- 1. Annabel Maclachlan, Steve P. Watson at all, Inherited platelet disorders: Insight from platelet genomics using next-generation sequencing <u>Platelets</u>. 2017 Jan 2; 28(1): 14–19.
- 2. Zotova I. I. Klinicheskie i molekularno-geneticheskie pokazateli tyajesti techeniya i effektivnosti terapii u bolnыx immunnoy trombotsitopeniey. Avtoref. dis. S-Peterburg, 2018. S. 22.
- 3. Zotova I.I. Osobennosti allelnogo polimorfizma genov nekotorых sitokinov u bolnых xronicheskoy immunnoy trombotsitopeniey/ I.I. Zotova, S.I. Kapustin, Yu.S. Drijun, S.P. Svitina, A.A. Pavlova, I.Ye. Pavlova, S.S. Bessmelsev, A.V. Chechetkin, S.V.Gritsaev // Vestnik gematologii. 2017. Т. 13, №3. S.31.
- 4. Ezzat D. A., Hammam A. A., El Malah W. M., Hussein S. A. DNA methyltransferase 3B gene promotor and interleukin-1 receptor antagonist polymorphisms in Egyptian children with immune thrombocytopenic purpura. Egiptian jornal of Haemotology. 2016 | Volume: 41 | Issue: 3 | Page: 121-127.;
- 5. Fatma E.S., Ahmed K.S., Nihal E.K.S., Salwa H.Y. Cytokines and immunoglobulin derangement in egyptian children with primary immune thrombocytopenic purpura. Egypt J Haematol [serial online] 2018 [cited 2019 Oct 20]; 43:1-4. Available from: http://www.ehj. eg.net/text.asp?2018/43/1/1/238541;
- 6. Katalin Koltai, Gabor Kesmarky at all, Platelet Aggregometry Testing: Molecular Mechanisms, Techniques and Clinical Implications Int J Mol Sci. 2017 Aug; 18(8): 1803.
- 7. Kim J. IL-1B-31 and IL-1Ra polymorphisms associated with increased host susceptibility to immune

thrombocytopenia/ Blood Res 2017;52:264-9. https://doi.org/10.5045/br.2017. 52. 4.235.

- 8. Kuhne T., Berchtold W., Michaels L.A., Wu R., Donato H., Espina B., Tamary H., Rodeghiero F., Chitlur M., Rischewski J. et al. Newly diagnosed immune thrombocytopenia in children and adults: a comparative prospective observational registry of the Intercontinental Cooperative Immune Thrombocytopenia Study Group. Haematologica. 2011;96(12):1831–7.
- 9. Li H., Zhou Z., Tai W., Feng W., Zhang D., Gu X. et al. Decreased frequency of IL-17F rs763780 site allele G is associated with genetic susceptibility to immune thrombocytopenia in a Chinese population. Clin Appl Thromb Hemost 2017 Jul 30;23(5):466-471.

10. Lingjia Y, Chunmei Z, Liping Z, Yongyu S, Xuebin J. Biomarkers for immune thrombocytopenia. Biomark Res. 2015:3:19.

11. Vilela, Josie Fadul. Investigation of interleukin-1 (IL-1), IL1RN, IL-4, IL-6 and IL-10 gene polymorphism adult patients with immune thrombocytopenic purpura. 2012. 146 p.].

12. Yadav D. K., Tripathi A. K., Gupta D., Shukla S., Singh A. K., Kumar A., Agarwal J., Prasad K. N. Interleukin-1B (IL-1B-31 and IL-1B-511) and interleukin-1 receptor antagonist (IL-1Ra) gene polymorphisms in primary immune thrombocytopenia. Blood Res. 2017 Dec; 52(4):264-269. English. https://doi.org/10.5045/br.2017.52.4.264.

MOLECULAR-GENETIC BASES FOR THE DEVELOPMENT OF PATHOLOGIES OF THE PLATE LINE OF HEMOSTASIS

Matkarimova D.S., Sabirova Sh.G.

Abstract. Purpose of the study: To assess the features of the prevalence and the contribution of polymorphic variants of TNF- α genes (rs1800629) in the formation of immune thrombocytopenia (ITP) and GP IIb (T2622G) in the development of dysaggregation thrombocytopathy (DTP).

Material and methods: The study included 89 patients with ITP and 71 patients with disaggregation thrombocytopathy (median age - 41 ± 1.7) for comparison of the group, 48 apparently healthy donors served as control without pathology of the hemostasis system (median age - 42 ± 1.4). Detection of TNF- α (rs1800629) and GP IIb (T2622G) gene polymorphisms was performed by SNP-PCR.

Results and conclusions. Carriage of heterozygous G / A genotype of rs1800629 polymorphism of TNF- α gene associated with a high risk of developing ITP, whereas the homozygous G / G genotype acts as a protective genotype in the pathogenesis of ITP. At the same time, the heterozygous T / G genotype of the T2622G polymorphism of the GPIIb gene in the main group and the hereditary dysaggregation thrombocytopathy (HDTP) subgroup are not statistically significantly associated with the development of the disease.

Key words: gene polymorphism, rs1800629 TNF- α , GPIIb (T2622G), immune thrombocytopenia (ITP), dysaggregation thrombocytopathy (DTP). allele, genotype, pathogenesis.

УДК: 616-01/09-65.018-614.2

ОПРЕДЕЛЕНИЕ ОПЫТА ПАЦИЕНТОВ/PATIENT EXPERIENCE В ЭКСТРЕННОЙ МЕДИЦИНСКОЙ ПОМОЩИ УЗБЕКИСТАНА

Мирварисова Л.Т., Зуфаров П.С., Акбарова Д.С., Файзиева Н.Н., Рустамова Ж.Т. Мирворисова З.Ш., Асатова Н.Б.

O'ZBEKISTONDA SHOSHILINCH TIBBIY YORDAMDAN BEMORLARNING QONIQQANLIGINI O'RGANISH

Mirvarisova L.T., Zufarov P.S., Akbarova D.S., Fayzieva N.N., Rustamova J.T., Mirvorisova Z.Sh., Asatova N.B.

DEFINITION OF PATIENT EXPERIENCE IN UZBEKISTAN EMERGENCY CARE

Mirvarisova L.T., Zufarov P.S., Akbarova D.S., Fayzieva N.N., Rustamova J.T., Mirvorisova Z.Sh., Asatova N.B.

Группа Реализации Проекта Всемирного Банка «Совершенствование служб ЭМП», Ташкентская медицинская академия, Центр развития профессиональной квалификации медицинских работников, Ташкентский педиатрический медицинский институт